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Existence of hysteresis in the Kuramoto model with bimodal frequency distributions
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We investigate the transition to synchronization in the Kuramoto model with bimodal distributions of the
natural frequencies. Previous studies have concluded that the model exhibits a hysteretic phase transition if the
bimodal distribution is close to a unimodal one due to the shallowness of the central dip. Here we show that
proximity to the unimodal-bimodal border does not necessarily imply hysteresis when the width, but not the
depth, of the central dip tends to zero. We draw this conclusion from a detailed study of the Kuramoto model

with a suitable family of bimodal distributions.
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I. INTRODUCTION

Understanding the dynamics of large populations of het-
erogeneous self-sustained oscillatory units is of great interest
because they occur in a wide range of natural phenomena
and technological applications [1]. Often a macroscopic sys-
tem self-organizes into a synchronous state, in which a cer-
tain fraction of its units acquires a common frequency. This
occurs as a consequence of the mutual interactions among
the oscillators and despite the differences in their rhythms
[2]. Examples of collective synchronization include pace-
maker cells in the heart and nervous system [3,4], synchro-
nously flashing fireflies [5], collective oscillations of pancre-
atic beta cells [6], and pedestrian induced oscillations in
bridges [7].

A fundamental contribution to the study of collective syn-
chronization was the model proposed by Kuramoto [8]. This
model, and a large number of extensions of it, has been ex-
tensively studied because it is analytically tractable but still
captures the essential dynamics of collective synchronization
phenomena (for reviews see [1,9-11]). The original Kura-
moto model consists of a population of N oscillators inter-
acting all-to-all. The state of an oscillator i is described by its
phase 6,(r) that evolves in time according to

N
. K
0,-=wi——z Sin(@i—ﬂj). (1)
Nj=1

The parameter K determines the strength of the interaction
between one oscillator and another. The oscillators are con-
sidered to have different natural frequencies w;, which are
taken from a probability distribution g(w). In his analysis
Kuramoto adopted the thermodynamic limit N— o and con-
sidered g(w) to be symmetric. In this case and without loss
of generality, the distribution can always be centered at zero,
ie., glw)=g(-w), by going into a rotating framework 6,
— 0j+Qt.

Kuramoto found useful to study the synchronization dy-
namics of system (1) in terms of a complex order parameter
Z:N—IE;V:I exp(i6;). Note that z is a mean field that indicates
the onset of coherence due to synchronization in the popula-
tion. System (1) possesses an incoherent state with z=0 (that
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exists for all values of the coupling strength K) in which the
oscillators rotate independently as if they were uncoupled,
0,(t) ~ wit. Using a self-consistency argument, Kuramoto
found that for a unimodal distribution g(w), above the cou-
pling’s critical value

2
K. = e(0)’ (2)

a new solution with asymptotics

4 | K-K.
|Z| Kz _ ’7Tg"(0) (3)
branches off the incoherent (z=0) solution. This emerging
solution is a partially synchronized (PS) state, in which a
subset of the population S entrains to the central frequency
(6;cs=const).

Equation (3) shows that the orientation of the PS bifurcat-
ing branch depends on whether the distribution is concave or
convex at its center. As a consequence of that, at K=K, the
PS state is expected to bifurcate supercritically for unimodal
distributions [g"(0) <0] and subcritically for bimodal distri-
butions [g”(0) >0]. However, Kuramoto’s analysis did not
permit to study the stability of the solutions and thus one
cannot conclude whether bimodal distributions show bista-
bility close to the transition point [Eq. (2)] (see discussion in
p. 75 in [8]). In fact, Kuramoto discarded the possibility of
bistability. Instead he expected the incoherent state to be-
come unstable earlier, i.e., at a certain critical value KC’_
<K,, via the formation of two symmetric clusters of syn-
chronized oscillators near the distribution’s maxima (later
Crawford called this state standing wave (SW) [12]). As the
coupling is increased further, he predicted that the interaction
between the clusters would tend to synchronize them form-
ing a single synchronized group, i.e., a PS state.

A. Sum of unimodal distributions with different means

After Kuramoto’s seminal work [8], several articles have
further investigated the synchronization transition in model
(1) with symmetric bimodal distributions [12-17]. These
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FIG. 1. (Color online) Examples of bimodal frequency distribu-
tions given by Eq. (5) with 6=1. Left panel: &é&=vy [what implies
g(0)=0]. Note that as y decreases the maxima of the distribution
become closer. For all these distributions (with £é=17) the route to
synchronization as K is increased from zero is [—SW —PS (cf.
Fig. 3). Right panel: two examples with £<y. The distribution
depicted with a continuous line has well separated peaks and shows
a transition I — SW — PS, whereas the other distribution is closer to
the unimodal limit [Eq. (7)] and presents hysteresis in the route to
synchronization (cf. Fig. 4).

studies assumed g(w) to be the superposition of two identical
even unimodal distributions g(w) centered at *wy: g(w)
=g(w+wy) +g(w—wy) [19]. Parameter w,, controls the sepa-
ration of the peaks. Decreasing w, the distribution’s maxima
approach each other and, at the same time, the central distri-
bution’s dip becomes shallower [i.e., g(0) increases]. Even-
tually, at a value wy=wqp that satisfies

8" (0= 0)]y 0, =0 4)

wop

the peaks merge and the distribution becomes unimodal. The
dynamics of the Kuramoto model for distributions of this
type is as follows [13]: when the peaks are well separated
(wq larger than a certain value wy)p) the transitions increasing
K are as Kuramoto foresaw: incoherence (I)— SW — PS.
However, if the peaks are near (wgp>> wy>> wyp) there exists
arange of K below K, where bistability between incoherence
and either a PS or a SW state is observed, as Eq. (3) sug-
gested [20].

B. Difference of unimodal distributions with different widths

In this paper we are interested in understanding the syn-
chronization transition in the Kuramoto model with bimodal
distributions in situations that cannot be achieved summing
even unimodal distributions. In particular summing even dis-
tributions implies that if the peaks are brought closer the
central dip becomes less deep (unless the distributions are
Dirac deltas). Thus we cannot approach the peaks arbitrarily
near while keeping the central dip’s depth (see, e.g., in the
left panel of Fig. 1 for a distribution family with constant
depth but arbitrary distance between the peaks).

We will use a family of bimodal distributions that are
constructed as the difference of two unimodal even functions
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FIG. 2. The parameter space of distribution [Eq. (5)] [not de-
fined above the bisectrix ¢=y neither at point (1,1)]. Function [Eq.
(5)] is unimodal below line B and bimodal above it (shaded re-
gions). Three lines signal the loci of codimension-two bifurcations
(A, B, and D) projected on the (v, &) plane. Between lines D and B
(dark gray region) the transition to synchronization involves
hysteresis.

with the same mean and different widths: g(w)=g,(w)
—2,(w). These distributions could be useful to model sys-
tems in which a fraction of the central natural frequencies of
a population g; is missing due to, for example, some reso-
nance, symmetry, or external disturbance.

We choose the functions g; to be Lorentzians because of
their mathematical tractability. Assuming 6> vy the normal-
ized distribution reads

=1
w Tt s

with é= vy to be well defined and E=1/(5-¢) is the normal-
ization constant. Without loss of generality we assume 6=1
hereafter because this can be always achieved rescaling w,
time, and the parameters w’'=w/é8, t'=t6, K'=K/¥d, '
=1v/ 6, and & =&/ 5. We will also drop the primes to lighten
the notation. Figure 1 shows several examples of distribu-
tions [Eq. (5)]. Distribution family [Eq. (5)] can exhibit an
arbitrarily deep minimum while keeping the maxima as near
as wished.

The left panel of Fig. 1 shows two examples for the case
&=y, which will be analyzed in detail below. This case im-
plies g(0)=0, which corresponds to the maximal value of the
ratio &/ y=1. As y—0, the central dip becomes infinitely
narrow and at y=0 the distribution becomes unimodal. This
unimodal transition is therefore discontinuous and satisfies

[21]

lim g"(w=0)=00. (6)

y—0*

In addition, distribution [Eq. (5)] also presents the regular
unimodal-bimodal border via g”(0)=0 at

&= Y3 (7)

with y#0 (line B in Fig. 2).
The outline of the paper is as follows. Section II summa-
rizes recent theoretical results that permit to reduce the Kura-
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moto model to a system of ordinary differential equations
with complex variables. These results are then used to find
the two ordinary differential equations (ODEs) that describe
the dynamics of the Kuramoto model with distribution [Eq.
(5)]. In Sec. IIT we study the special case é=1, and we show
that there indeed exists a transition to synchronization in
absence of hysteresis independent of the separation between
the distribution’s maxima. Namely, in this case the route to
synchronization is always [ —SW —PS. In Sec. IV we study
the most general case g(0) >0 and determine the disposition
of the different synchronization scenarios with respect to the
unimodal-bimodal border.

II. LOW DIMENSIONAL DESCRIPTION OF THE
KURAMOTO MODEL

We start considering the thermodynamic limit N— oo of
model (1). We drop hence the indices in Eq. (1) and intro-
duce the probability density for the phases f(6,w,?) [8,22].
Then f(0,w,1)df0dw represents the ratio of oscillators with
phases between 6 and 6+d#6 and natural frequencies between
o and w+dw. The density function f obeys the continuity
equation

af  d(fv)
o 90

: (8)

where the angular velocity of the oscillators v is given by

21
v(0,w,1)=w-K f(0',w,1)sin(0— 60')d 6’ . 9)
0

In the continuous formalism, the complex order parameter
defined by Kuramoto becomes

0 2
7(t) = J f e"f(0,w,1)dbdw. (10)
—o0 J

Since the density function (6, w, ) is real and 27 periodic in
the 6 variable, it admits the Fourier expansion

f(H,w,t):M[l+E[f,l(w,t)ei’1‘9+c.c.] . (11)
2w n=1

where f,=f",. Note that the order parameter [Eq. (10)] now
reduces to

Z(1) =J g(o)fi(w,)do. (12)

Substituting the Fourier series [Eq. (11)] into the continuity
Eq. (8) and using Eq. (12) one gets an infinite set of inte-
grodifferential equations for the Fourier modes,

. K
fn:_inwfn'l'n?(z*fn—l _an+l)' (13)

Recently Ott and Antonsen (OA) found a very remarkable
result [23]: the ansatz
fulw,1) = a(w,n)"

is a particular—and usually the asymptotic—solution of the
infinite set of Eq. (13) if « satisfies

(14)
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K
d=—iwa+ E(z* -za?).

(15)
Equation (15) reduces to a finite set of ODEs for distribu-
tions g(w) with a finite set of simple poles out of the real
axis. Recalling f;=a the order parameter can be calculated
by extending the integral in Eq. (12) to a contour integration
in the complex plane. This is possible since « has an analytic
continuation in the lower half w plane [23]. In turn only that
the values of « at the poles of g(w) with negative imaginary
part are relevant.

Several recent studies show that ansatz (14) yields predic-
tions in agreement with numerical simulations [13,23-28]. In
addition Ott and Antonsen theoretically supported the valid-
ity of their ansatz for the case of a Lorentzian distribution
[29]. So far, disagreement between the OA ansatz and nu-
merical results has been shown for frequency distributions
with no spread and non-odd-symmetric coupling function.
This entails the freedom to select arbitrary values for some
constants of motion [30].

A. Main equations

In this section we use the OA ansatz considering fre-
quency distribution (5). This yields two ODEs governing the
dynamics inside the low-dimensional OA manifold. First of
all, it is convenient to express Eq. (5) in partial fractions,

=] 1 1 & &
g(w)=-— - -+ ;
27\ w w—vi w+yi

). (16)

i w+i
Then, according to Eq. (12) the order parameter reads
(1) =Elen (1) - (1],

with a,(f)=a(w=-i,1) and a,(f)=a(w=-iy,t). Using Eq.
(17) in Eq. (15), we obtain the following two ODEs with
complex variables that govern the evolution of the order pa-
rameter [Eq. (17)],

(17)

ay=—a, +k(a; - éa,) — k(a) - fa;)af, (18a)

@y =— ya, + k(a, — éay) — k(o — éa)aa,  (18b)

with k=EK/2. The phase space of Egs. (18) is four dimen-
sional, but due to the global phase shift invariance (a;,a,)
— (a1e’P, aye’P) the dynamics is actually three dimensions
[see also Egs. (A1) in Appendix Al.

B. Fixed points

According to Eq. (17), the fixed points of Egs. (18) cor-
respond to steady states of the order parameter z. The trivial
solution a;=a,=0 yields z=0, corresponding to the incoher-
ent state.

In order to calculate the nontrivial fixed points, note first
that invariance under the action of the global rotation e#
allows us to choose a;=x;+iy, real, i.e., a;=x;. It follows
from Eq. (18a) that the fixed points lie on the subspace
where a, is real too. We can therefore take « and «a, as real
(keeping in mind that a continuous of fixed points is gener-
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ated under the action the neutral rotation ¢’?). Hence, the
equations for the fixed points are

0=—x; +k(x; — &x)(1 —x7), (19a)

&0)(1-x3). (19b)

Additionally, note that these equations are symmetric under
the reflection (x;,x,) — (-=x;,—x,). This implies that the so-
lutions (with the exception of the solution at the origin) exist
always in pairs with opposite signs (Fx;, = x,).

Subtractmg Eq (19a) from Eq. (19b) multiplied by
obtain x2 1[)6 +7 +§ 1]. This can be substltuted back 1nt0
Eq. (19a) t0 get a cubic equation in X=x7,

P(X)=k*(1 - y)X> -k (2k— 1)(1 - yd) - 1 + k&(£- »)]X*
+[(K2 =2k (1 — yd) + 1 + 2K2E(E- y)IX
— k& y+k(éE-y)]=0. (20)

Each of the solutions of this equation yields two twin solu-
tions with coordinates
1
}. (21)

k(1-X)

0=—yx, +k(x; —

X1 = i\/}_( §x2=x1{1—

After some algebra we obtain the relation of the solutions
with order parameter,

25\3”)—(
el = (22)
K(1-X)
A steady state (x;,x,) results in a time-independent value of
z and hence it should correspond to a partially synchronized
state. However, note that X can only take values within the

range X €[0,1- 2§( + 1- ﬁ)] to have a z value consistent
with its definition, 1e [0 1].

As the polynomial in Eq. (20) is cubic, there is one real
solution, X3, for all the parameter values. This solution lies
in the range [0,1] (for k>1 a better bound is [1-1/k,1]
since P(1-1/k)=—&<0 and P(1)=1>0). However, it turns
out that the fixed points associated to X3y are “unphysical”
(even though in some parameter ranges |zi <1). The reason is
that the x, coordinate, corresponding to the solution X ), is
always larger than 1 in absolute value. This implies |azj >1,
and according to Eq. (14) the Fourier series of the density
function f(0,w,?) is divergent at w=—iy.

We will see below that for large enough values of K there
exist two more real solutions of P(X): X(;)=X<1-1/k.In
this case (except when X ;) becomes negative) such solutions
indeed correspond to PS states of the original Kuramoto
model [Eq. (1)].

III. BIMODAL DISTRIBUTIONS VANISHING AT THEIR
CENTER (£=7)

In this section we consider £=vy what implies that distri-
bution [Eq. (5)] vanishes at its center, g(0)=0. In this case 7y
(or &) becomes the parameter controlling the width of the
central dip of g(w), and the maxima of the distribution are
located at (see Fig. 1, left panel)
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FIG. 3. Phase diagram for {='y. For this case the synchroniza-
tion transition never involves hysteresis. The solid lines mark the
saddle-node (SNIC) [from Eq. (26)] and the Hopf [Eq. (24)] bifur-
cations. Symbols correspond to the numerical estimation of the bi-
furcation lines via numerical integration of the original Eq. (1) with
N=2000.

w=* y. (23)

A. Stability of the incoherent state

In the incoherent state the oscillators are uniformly dis-
tributed in the interval [0,24), and thus the order parameter
vanishes. This state corresponds to the fixed point at the
origin a;=a,=0. A linear stability analysis of Egs. (18) re-
veals that this fixed point undergoes a degenerate Hopf bi-
furcation at ky=(1+v)/(1—). In terms of the original cou-
pling constant K, we find

Ky=2+2y. (24)

At this point the eigenvalues are imaginary )\1,2=)\§’4=i\e";
and twofold degenerate. Observe that as y— 0, the critical
coupling for a (unimodal) Lorentzian distribution of unit
width is recovered: Ky(y—0)=K_,=2/[mg(0)]=2. Figure 3
shows the boundary K in the (y,K) plane. As expected, we
find that as the central dip of the distribution broadens (in-
creasing 7y) the stability region of the incoherent state grows.

B. Saddle-node bifurcation

The cubic equation [Eq. (20)] for the nontrivial fixed
points becomes greatly simplified under the assumption &

= ’y,
0(X) =k*(1 - )X° - k[(2k - 1)(1 - 7)) - 1]x*
+[(K*=2k)(1 - ¥) +1]X - Yk =0. (25)
For y=0 the central dip vanishes, and we recover the solu-
tions for a Lorentzian distribution X=0,1-1/k. When y
>0 there is a saddle-node bifurcation at k=kgy, i.e., there is

a transition from one (for k<kgy) to three solutions (for k
> kgy). kgy and y can be related imposing the condition that
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the discriminant of Q(X) vanishes. This gives the following
relation:

_ Bkiy — (1 +8kgy)* + 20kgy — 1
- Bksn(ksy +1)°

’}’2

There are two important asymptotic values for this bifurca-
tion line, which expressed in terms of the original coupling
constant K are

(26)

Y 2/3
KSN(')’_’O)=2+6<E) +O0(v), (27)

Konly— 1):(3+\'8)(1—1Ty). (28)
When K increases above Ky the born solutions depart from
each other X(5)—X(;)~ VK—Kgy+ higher order terms. One so-
lution becomes progressively smaller [dX()(K)/dK<0],
whereas the second one grows [dX(5)(K)/dK>0]. The latter
solution X5, yields a monotonically growing value of |z| with
K. This is not surprising because in the Kuramoto model, at
large values of K, there exists always a stable PS solution
with d|z|/dK>0 (and limg_.|z|=1, i.e., full synchroniza-
tion). We advance that the corresponding twin fixed points
from X,y are stable, whereas the fixed points corresponding
to X(;y are saddle.

C. Numerical simulations and phase diagram

In this section we construct the phase diagram with the
loci of Hopf and saddle-node bifurcations that we have ob-
tained above. Numerical simulations of the reduced Egs. (18)
were carried out and compared with the full model [Eq. (1)].
This permits to relate the dynamics of the variables a; , with
the actual dynamical states of the Kuramoto model.

As already mentioned, the four-dimensional system [Egs.
(18)] is effectively three dimensional due to the existence of
a neutral global rotation. Interestingly the attractors of the
model are apparently embedded into a rwo-dimensional
plane. Numerical simulations of Egs. (18) using arbitrary
initial conditions show that the dynamics always collapses
into a plane which, by virtue of the neutral rotation e, can
be made coincident with the (x;,x,) plane, hereafter referred
to as the “real plane.” The stability against perturbations
transversal to the real plane (and not tangent to the global
rotation) is difficult to prove analytically. For the fixed point
X(2) born at the saddle-node bifurcation, the stability against
transversal perturbations is proven in Appendix A. Other at-
tractors (limit cycle) are transversally stable according to our
numerical simulations.

Numerical simulations of the reduced Egs. (18) with ei-
ther real or complex variables, it is irrelevant, reveal the
following:

(i) The Hopf bifurcation at K=Ky is supercritical and it
gives rise to a limit cycle around the origin. Due to the re-
flection symmetry of the equations z(r) vanishes twice per
period [this occurs when a=vya,; see Eq. (17)]. Tt is there-
fore reasonable to assume that the limit cycle corresponds to
the SW state, for which the two counter-rotating clusters of
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phase-locked oscillators are 7 out of phase twice per period.

(ii) The oscillatory dynamics appearing at K is destroyed
at K=Ky where twin saddle-node bifurcations give rise to
twin pairs of fixed points on the limit cycle. This bifurcation
is known as saddle-node on the invariant circle (SNIC) or
saddle-node of infinite period (SNIPER). As K approaches
Ky from below the period of |z(¢)| diverges due to the slow-
ing down of the dynamics at the twin bottlenecks anticipat-
ing the cease of oscillations via the (double) SNIC bifurca-
tion.

Finally, numerical simulations of the full Kuramoto model
[Eq. (1)] confirm the scenario —SW — PS predicted by the
reduced Egs. (18). We have numerically determined the
boundaries of different behaviors: square symbols in Fig. 3
are points in which the incoherent state loses stability leading
to a SW state. Additionally, triangles indicate points where
the order parameter becomes stationary.

D. Concluding remarks

Distribution [Eq. (5)] with é=vy becomes unimodal only
for y=0. As y—0 the bimodal distribution tends to a uni-
modal, but the limit is non-regular, see Eq. (6). The remark-
able point is that bistability is not observed even if the cen-
tral dip is extremely narrow (y— 0). This is in sharp contrast
with the scenario found when the peaks are close to merge
with g”(0)—0* at the usual unimodal-bimodal transition
(see below).

Another interesting fact is that the counter-rotating clus-
ters of the SW are born at the Hopf bifurcation [Eq. (24)]
with frequencies * vy, although the maxima of the distribu-
tion are located at *7. This means that the relative shift
between distribution’s maxima and cluster frequencies at the
onset of the SW diverges as y— 0. This is a consequence of
the extreme asymmetry of the peaks in this limit.

IV. BIMODAL DISTRIBUTIONS NONVANISHING AT
THEIR CENTER (£<7)

In this section we analyze the case &£<7, which is
complementary to the one studied in Sec. III (é=y). Thus in
the present case we let ¢ and 7y to be independent of each
other (see Fig. 2). As we did in the Sec. III, we determine
first the local bifurcations of the fixed points, and then we
summarize our findings in the (vy,K) phase plane together
with the results obtained by numerical integration of the re-
duced Egs. (18) as well as of the full Kuramoto model [Eq.

(D]

A. Fixed points
1. Incoherent state and its stability

The incoherent state becomes unstable in two possible
ways depending on the value of & with respect to

§A:')’2

(see line A in Fig. 2). For £§<&,, there is a degenerate Hopf
bifurcation at the critical value Ky given by Eq. (24) which is

(29)
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independent of & For £> ¢y, the instability of the incoherent
state occurs via a pitchfork bifurcation at

K= 2 _2/1-9
mg(0)  y-§
The bifurcation is subcritical, and it switches to supercritical
when the distribution becomes unimodal at y> &;°. The loci
of Hopf and pitchfork bifurcations collide at the
codimension-two point where Ky=Kp and £=¢§,. This point
is of the double zero eigenvalue type (Takens-Bogdanov)

[31].

The boundaries [Egs. (24) and (30)] for Hopf and pitch-
fork instabilities have also been obtained following a differ-
ent approach in Appendix B.

(30)

2. Nontrivial fixed points (partial synchronization)

A saddle-node bifurcation occurs when P(X) in Eq. (20)
has exactly two roots (one of the twofold degenerate). And
this bifurcation point can be determined numerically finding
the value of k where the discriminant of P(X) vanishes. The
scenario is similar to the one observed for &=+, but in this
case the saddle solution X(;)>0 exists up to the pitchfork
bifurcation with the origin at K=Kp. If the distribution is
unimodal X(;)<<0, which makes this solution not valid.

B. Numerical simulations and phase diagram

Our analytical results provide information about local bi-
furcations. In addition we have performed numerical simula-
tions of the ODEs [Egs. (18)] in order to obtain the full
system’s picture. As we discussed in Sec. III C, we can as-
sume that a; are real variables. In addition, we have per-
formed numerical simulations of the original system that in-
dicate that this assumption yields to correct results.

Figure 4 shows the disposition of qualitatively different
dynamics in the parameters space spanned by 7y and K for a
particular value of & Like in [13] we find that three
codimension-two points organize the parameter space:
Takens-Bogdanov (A), degenerate pitchfork (B), and saddle-
node separatrix loop (D) [32]. The three codimension-two
points collapse at £&=y=0 [see Fig. 2 and expressions (29)
and (7)]. Line D approaches the origin linearly: &,(y—0)
=ay with a=0.493, suspiciously close to %

One can better understand Fig. 4 by looking at the panels
of Fig. 5, in which phase portraits for qualitatively different
states are shown. In the rightmost part of Fig. 4, y> y;
=¢'3, the distribution becomes unimodal, and thus the stan-
dard route to partial synchronization is found. In the leftmost
part, é¢= y<vy,=0.599 97 (K, =3.7646), we have the same
route than in Sec. III, i.e., a SW state limited by Hopf and
SNIC bifurcations. In contrast, in the central part of the
phase diagram (around point A), there exist two regions with
bistability where the observed asymptotic state depends on
the initial conditions. In one region (SW/PS) standing waves
and partial synchronization coexist, and the SW state (a limit
cycle) disappears via a heteroclinic collision with the saddle
points born at mirror saddle-node bifurcations. In the second
region (I/PS) incoherence and partial synchronization coex-
1st.
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FIG. 4. Phase diagram for {=0.5. Solid lines mark the bifurca-
tions: saddle-node off the limit cycle (SN), SNIC, Hopf bifurcation
[Eq. (24)], heteroclinic bifurcation (found numerically using the
reduced equations), and pitchfork bifurcation [Eq. (30)]. Three big
circles signal the codimension-two points: (a) Takens-Bogdanov, (b)
degenerate pitchfork, and (d) saddle-node separatrix loop. The open
symbols correspond to different bifurcations found by numerical
integration of Eq. (1) with N=2000. Filled symbols inside each
region indicate parameter values for the phase portraits in Fig. 5.

Bifurcation lines in Fig. 4 are calculated from analytical
results and from numerical integration of the ODEs [Egs.
(18)]. Empty symbols in the figure show the bifurcations
determined integrating the Kuramoto model with N=2000.
The agreement is good and confirms the validity of the OA
ansatz.

Codimension-two point A

In this section we make a short digression about the
codimension-two point A and the importance of the symme-
tries in the model. Point A in Fig. 4 is a Takens-Bogdanov
point of system [Eqs. (18)] that has O(2) symmetry. This
stems from the inherent O(2) symmetry of the Kuramoto
model [with symmetric g(w)]. Numerics show that the
asymptotic dynamics occurs in the real plane—i.e., Egs. (18)
with real coordinates—where the symmetry group is only
Z,CO0O(2). This symmetry imposes the global bifurcation
(Het) to be nontangent to the Hopf line [31], in contrast with
a nonsymmetric Takens-Bogdanov point. Two scenarios are
possible around the odd-symmetric Takens-Bogdanov point
[31]. Hence, one may wonder if the alternative scenario, in-
volving a saddle-node bifurcation of limit cycles, might also
be found in the Kuramoto model.

The scenario that we have presented in this section (see
also [13]) is apparently the same one Bonilla et al. [15] un-
covered in the neighborhood of the Takens-Bogdanov point
for the Kuramoto model with additive noise and a bidelta
frequency distribution. In that work the full O(2) symmetry
is taken into account. Crawford and Bonilla et al. [12,15]
found that, due to the O(2) symmetry, the degenerate Hopf
bifurcation gives rise to a branch of unstable traveling wave
solutions, in addition to the stable SW. According to [15]
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FIG. 5. Phase portraits in (rotated) x;,x, coordinates for quali-
tatively different cases. Each panel corresponds to a value of y and
K at the position of a filled symbol in Fig. 4. (a) and (b) Partial
synchronization with K=4 and (a) y=0.6 and (b) y=0.75; (c) co-
existence SW/PS—y=0.67, K=3.45; (d) coexistence I/PS—y=0.7,
K=3.3; () SW—y=0.6, K=3.5; and (f) [—y=0.6, K=2.5.

these traveling wave solutions should disappear at a certain
K <Kp in a local bifurcation with the saddle fixed points X,
born at the SN bifurcations. This bifurcation reverses the
transversal stability of the saddle fixed points, which in turn
makes congruent the pitchfork bifurcation of these fixed
points with the completely unstable fixed point at origin. We
think these traveling wave solutions and their associated bi-
furcations are captured by the reduced Egs. (18) because the
OA ansatz has retained the O(2) symmetry of the model.
This means that although the relevant dynamics (the attrac-
tors) are inside the real plane of («,,a,), physical unstable
objects (traveling waves) “live” outside this plane.

V. CONCLUSIONS

We have investigated the routes to synchronization in the
Kuramoto model with a bimodal distribution constructed as
the difference of two unimodal distributions of different
widths. These distributions admit an arbitrarily deep and nar-
row central dip, which is not achievable in distribution types
considered in the past. This has allowed us to reinforce and
extend the results recently published in [13].

We have found that bimodal distributions [Eq. (5)] near
unimodality produce hysteretic phase transitions except in

PHYSICAL REVIEW E 80, 046215 (2009)

some region in the neighborhood of the unimodal limit
(¢,7)=(0,0) (see Fig. 2).

We expect a wide family of bimodal distributions to ex-
hibit the same qualitative features as that of Fig. 2: the hys-
teretic region exists at the bimodal side of the unimodal-
bimodal border, and it shrinks as the nonregular unimodal-
bimodal transition [g"(0)=c] is approached. Moreover the
absence of hysteresis for g(0)=0 should be found in any
bimodal distribution if the dependence is quadratic—as in
our distribution [Eq. (5)]—or has a larger power: g(w)
*|w|” for small o, with v=2.
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APPENDIX A: PROOF OF THE TRANSVERSAL
STABILITY OF FIXED POINT X, IN SEC. III

Global phase shift invariance, (a;,a,)— (a,e'?, a,e'),
allows us to reduce Egs. (18) in one dimension by passing to
polar coordinates, a;= pjeiqﬁ./, and defining the phase differ-
ence =, — ¢,. We obtain three ODEs,

p1=—p1 +k(p, — épy cos Y)(1 - pj), (Ala)
pr==ypy+k(p; cos = &py)(1 —Pg)s (Alb)
pipath=—K(1 - Hpips+pi — Ep3lsin . (Alc)

In Sec. III we took &=7 and found that twin saddle-node
bifurcations (namely, SNICs) give rise to two pairs of fixed
points. Here we prove (we rather sketch the proof) the trans-
versal stability of the mirror fixed points associated to X,
via Eq. (21).

First of all note that X, yields a fixed point (x;,x,) and
its mirror image, with x; and x, having the same sign, =0.
This is a consequence of Eq. (21) because X(;)<<1-1/k. The
latter inequality stems from the fact that Q(1-1/k)=—7*
<0 and by continuation of the solutions from k=o00:
lim,ﬁw X(l)(k)zo, lim,ﬁw X(2’3)(k)= 1.

Therefore we have to prove that factor

F=(1-)pips+pi - 0> (A2)

in Eq. (Alc) for ¢ is positive. Replacing pf:X(z) and p%
=X()+1/k, we have

F=(1-y[X3)+Xa)(1 + 1/k)] - yk. (A3)

As X exists only above the saddle-node bifurcation (k
=kgy) and kgy>ky=(1+7y)/(1-y),
F>{-vyh (A4)

with
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h=Xp)+Xa) — YI(1+ 7). (A5)

Then 2> 0 is a sufficient condition for the transversal stabil-
ity of the fixed point.

It suffices to prove that 4 is positive at the locus of the
saddle-node bifurcation because X(5)(k,7y) exhibits its mini-
mal value over k precisely at the bifurcation: X (k
>kgy,Y)>X()(kgy, ). For our aim it is better to param-
etrize the SNIC line by k instead of y. Hence we introduce in
Eq. (A5) the expressions

(i) y as a function of kgy via Eq. (26) and

(ii) X(p)(ksy), determined from Eq. (25) in the twofold
root case.

The calculation of terms (i) and (ii) can be readily done
with symbolic software such as MATHEMATICA. As a result
we obtain a function h(kgy) that is positive in all the domain
of kSN S (1 ,OO).

Moreover using expressions (27) and (28) we can get ap-
proximate expression for 4 (as a function of 7),

2/3
MY*OF{g) +0(y), (A6)

h(y— 1) = 0.0858. (A7)

APPENDIX B: STABILITY OF THE INCOHERENT STATE
IN THE KURAMOTO MODEL WITH NOISE

For the sake of completeness and as a double check of
some of the results obtained, we study here the stability of

PHYSICAL REVIEW E 80, 046215 (2009)

the incoherent state when the model is perturbed with addi-
tive white noises. In this case, the right-hand side of Eq. (1)
has to be supplemented with uncorrelated fluctuating terms
7; satisfying (#,(t) ;(¢'))=205,;6(t—1"). So far a counterpart
of the Ott-Antonsen ansatz for the stochastic problem has not
been found. It is nonetheless possible to obtain the stability
boundary of incoherence resorting to the Strogatz-Mirollo
relation for the discrete spectrum of eigenvalues \ [22],

K ]
_f gl
2) ANto+iw

Considering the distribution of frequencies [Eq. (5)], this
equation can be solved for the eigenvalues A.

Noise increases the domain of the incoherent state. Hopf
and pitchfork bifurcations continue to occur, but the values
of K are shifted to larger values. We obtain

(B1)

Ky=2+2y+40, (B2)

. 2rra1-9(+0)
P (y-9+0(1-9)

which indeed reduce to Egs. (24) and (30) for ¢=0. The
location of the Takens-Bogdanov point [cf. Eq. (29)] also
varies and now pitchfork and Hopf bifurcations collide (Ky

=KP) at
2
_ ’y+0'
gA_<1+0'> '

; (B3)

(B4)
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